RECITATION 6 EXTREME VALUE PROBLEMS

James Holland

2019-10-08

Section 1. Exercises

- Exercise 1 -

Find the critical points of e^x . Find the maximum value of e^x on $[0, \ln(5)]$.

Solution .:.

There are no critical points of e^x since its derivative (e^x) is never 0 and is always defined. The maximum value then just needs to be checked on the endpoints: $e^0 = 1$ while $e^{\ln(5)} = 5 > 1$. Hence 5 is the maximum value.

- Exercise 2 -

Find the critical points of $f(x) = x^2 + 4x - 1$. Find the minimum and maximum value on [-4, 4].

Solution .:.

The critical points are when the derivative f'(x) is 0 or is undefined while f(x) is defined. Note that f'(x) = 2x + 4 which is 0 iff x = -2. Since f'(x) is always defined, this is the only critical point. We also have that f(-4) = 16 - 16 - 1 = -1, f(-2) = 4 - 8 - 1 = -5, f(4) = 16 + 16 - 1 = 31. Hence the minimum value is -5 and the max is 31.

– Exercise 3 –

Find the minimum value of $f(x) = \ln x/x$ on $[1, e^{100}]$.

Solution .:.

Using the quotient rule, $f'(x) = \frac{\frac{1}{x} \cdot x - \ln x \cdot 1}{x^2} = \frac{1 - \ln x}{x^2}$ this is 0 iff $\ln(x) = 1$ iff x = e. This is undefined for x = 0, but this isn't in the interval anyway. Testing the relevant points, we get that f(1) = 0, f(e) = 1/e and $f(e^{100}) = \frac{100}{e^{100}} < \frac{1}{e}$ since $100 < 2^{99} < e^{99}$ (taking the reciprocals flips the inequalities).

– Exercise 4 –

Is there a minimum value of 2x + 4 on (1, 4]? Is there a minimum value of $x^2 - 4x + 4$ on (1, 4]?

Solution .:.

No: for any x in (1, 4], $x_1 = (1 - x)/2$ is also in (1, 4] but $x_1 < x$ and so $2x_1 + 4 < 2x + 4$, implying that there can be no minimum value.

Yes: $x^2 - 4x + 4 = (x - 2)(x - 2)$ has a minimum value at x = 2 as a parabola.

– Exercise 5 –

Find the extreme values of $f(x) = \sec(x)$ from $[\pi/4, \pi/3]$.

Solution .:.

 $f'(x) = \frac{d}{dx} \frac{1}{\cos(x)} = \frac{\sin x}{\cos^2 x}$ this is 0 iff $\sin x = 0$ iff $x = \pi n$ for some integer *n*. This isn't in our interval, so we ignore these values. Similarly, $\cos(x) = 0$ iff $x = \pi/2 + \pi n$ for some integer *n*, which isn't in our interval:

again, we igore it. So there are no critical points within $[\pi/4, \pi/3]$. So to find the extreme values, we have $\sec(\pi/4) = \frac{1}{\cos(\pi/4)} = \frac{2}{\sqrt{2}} = \sqrt{2}$ and $\sec(\pi/3) = \frac{1}{\cos(\pi/3)} = \frac{1}{1/2} = 2$. So 2 is the maximum, and $\sqrt{2}$ is the minimum value.

- Exercise 6

Write $f(x) = \ln(\sin x)$. Find the critical points of f within $[\pi/4, 3\pi/4]$.

Solution .:.

By the chain rule $f'(x) = \frac{1}{\sin x} \cdot \cos x = 0$ iff $\cos x = 0$ iff $x = \pi/2 + \pi n$ for integer *n*. The only one of those in our interval is $\pi/2$. f'(x) is undefined iff $\sin x = 0$, which happens iff $x = \pi n$ for some integer *n*, which doesn't occur in our interval. So the only critical point in the interval is $\pi/2$.

- Exercise 7

Write $f(x) = e^{x^2}$. Find the extreme values on [-3, 3].

Proof .:.

 $f'(x) = 2xe^{x^2} = 0$ iff x = 0. Since f'(x) is defined everywhere, we have only one critical point: x = 0. Testing the relevant values, $f(-3) = f(3) = e^9$. $f(0) = e^0 = 1$ so the max value is e^9 and the min is 1.

- Exercise 8 -

Write $f(x) = \frac{1}{x^2+1}$. Find the extreme values on [-2, 2].

Proof .:.

 $f'(x) = \frac{-2x}{(x^2+1)^2}$, which is 0 if an only if -2x = 0, meaning x = 0. f'(x) is always defined since $x^2 \ge 0$ implies $x^2 + 1 > 0$ for all x (so the denominator of f'(x) is never 0). So x = 0 is the only critical point. Evaluating at the endpoints of the interval and the critical point yields $f(-2) = \frac{1}{5} = f(2)$ while f(0) = 1. Hence the min value is $\frac{1}{5}$ and the max is 1.