RECITATION 6 EXTREME VALUE PROBLEMS

James Holland

2019-10-08

Section 1. Exercises

Exercise 1

Find the critical points of e^{x}. Find the maximum value of e^{x} on $[0, \ln (5)]$.

Solution :

There are no critical points of e^{x} since its derivative $\left(e^{x}\right)$ is never 0 and is always defined. The maximum value then just needs to be checked on the endpoints: $e^{0}=1$ while $e^{\ln (5)}=5>1$. Hence 5 is the maximum value.

Exercise 2

Find the critical points of $f(x)=x^{2}+4 x-1$. Find the minimum and maximum value on $[-4,4]$.

Solution :

The critical points are when the derivative $f^{\prime}(x)$ is 0 or is undefined while $f(x)$ is defined. Note that $f^{\prime}(x)=$ $2 x+4$ which is 0 iff $x=-2$. Since $f^{\prime}(x)$ is always defined, this is the only critical point. We also have that $f(-4)=16-16-1=-1, f(-2)=4-8-1=-5, f(4)=16+16-1=31$. Hence the minimum value is -5 and the max is 31 .

Exercise 3

Find the minimum value of $f(x)=\ln x / x$ on $\left[1, e^{100}\right]$.

Solution .:

Using the quotient rule, $f^{\prime}(x)=\frac{\frac{1}{x} \cdot x-\ln x \cdot 1}{x^{2}}=\frac{1-\ln x}{x^{2}}$ this is 0 iff $\ln (x)=1$ iff $x=e$. This is undefined for $x=0$, but this isn't in the interval anyway. Testing the relevant points, we get that $f(1)=0, f(e)=1 / e$ and $f\left(e^{100}\right)=100 / e^{100}<1 / e$ since $100<2^{99}<e^{99}$ (taking the reciprocals flips the inequalities).

Exercise 4

Is there a minimum value of $2 x+4$ on (1, 4]? Is there a minimum value of $x^{2}-4 x+4$ on $(1,4]$?

Solution .:

No: for any x in $(1,4], x_{1}=(1-x) / 2$ is also in $(1,4]$ but $x_{1}<x$ and so $2 x_{1}+4<2 x+4$, implying that there can be no minimum value.
Yes: $x^{2}-4 x+4=(x-2)(x-2)$ has a minimum value at $x=2$ as a parabola.

Exercise 5

Find the extreme values of $f(x)=\sec (x)$ from $[\pi / 4, \pi / 3]$.

Solution .:

$f^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{d} x} \frac{1}{\cos (x)}=\frac{\sin x}{\cos ^{2} x}$ this is 0 iff $\sin x=0$ iff $x=\pi n$ for some integer n. This isn't in our interval, so we ignore these values. Similarly, $\cos (x)=0$ iff $x=\pi / 2+\pi n$ for some integer n, which isn't in our interval:
again, we igore it. So there are no critical points within $[\pi / 4, \pi / 3]$. So to find the extreme values, we have $\sec (\pi / 4)=\frac{1}{\cos (\pi / 4)}=\frac{2}{\sqrt{2}}=\sqrt{2}$ and $\sec (\pi / 3)=\frac{1}{\cos (\pi / 3)}=\frac{1}{1 / 2}=2$. So 2 is the maximum, and $\sqrt{2}$ is the minimum value.

Exercise 6

Write $f(x)=\ln (\sin x)$. Find the critical points of f within $[\pi / 4,3 \pi / 4]$.

Solution .:

By the chain rule $f^{\prime}(x)=\frac{1}{\sin x} \cdot \cos x=0$ iff $\cos x=0$ iff $x=\pi / 2+\pi n$ for integer n. The only one of those in our interval is $\pi / 2$. $f^{\prime}(x)$ is undefined iff $\sin x=0$, which happens iff $x=\pi n$ for some integer n, which doesn't occur in our interval. So the only critical point in the interval is $\pi / 2$.

Exercise 7

Write $f(x)=e^{x^{2}}$. Find the extreme values on $[-3,3]$.
Proof .:
$f^{\prime}(x)=2 x e^{x^{2}}=0$ iff $x=0$. Since $f^{\prime}(x)$ is defined everywhere, we have only one critical point: $x=0$. Testing the relevant values, $f(-3)=f(3)=e^{9} . f(0)=e^{0}=1$ so the max value is e^{9} and the min is 1 .

Exercise 8

Write $f(x)=\frac{1}{x^{2}+1}$. Find the extreme values on $[-2,2]$.
Proof : :
$f^{\prime}(x)=\frac{-2 x}{\left(x^{2}+1\right)^{2}}$, which is 0 if an only if $-2 x=0$, meaning $x=0 . f^{\prime}(x)$ is always defined since $x^{2} \geq 0$ implies $x^{2}+1>0$ for all x (so the denominator of $f^{\prime}(x)$ is never 0). So $x=0$ is the only critical point. Evaluating at the endpoints of the interval and the critical point yields $f(-2)=\frac{1}{5}=f(2)$ while $f(0)=1$. Hence the min value is $\frac{1}{5}$ and the max is 1 .

